

Construction Issues

Jim St. Martin

Allen Cooley

Construction Issues

- From Loading of Produced Mix Through Compaction
- Two Primary Causes of Increased Potential for Moisture Damage
 - Segregation
 - Low Density

Loading of Mixture

Minimize Segregation

Transportation of Mixture

- Improperly Loaded Mixes Segregate
- Draindown (Coarse-Graded Mixes)
- Thermal Segregation
 - Insulated Trucks
 - Tarps

Charging of Paver

- Break the Mix
- Flood Hopper
- Material Transfer Vehicle
 - Remix
 - Minimize Physical and Thermal Segregation

Compaction

- Achieve Proper Density
 - Permeability
- Minimize Fracture of Aggregate

Factors Affecting Permeability

- Pavement Density
- NMAS
- Gradation Shape
- Lift Thickness
- Construction Equipment?

Relationship Between Field Permeability and In-Place Air Voids 9.5 mm NMAS

Relationship Between Field Permeability and In-Place Air Voids 12.5 mm NMAS

Relationship Between Field Permeability and In-Place Air Voids 19.0 mm NMAS

Relationship Between Field Permeability and In-Place Air Voids 25.0 mm NMAS

Critical Density Values

- 9.5 and 12.5 mm NMAS ~ 7.5 8.0 %
- 19.0 mm NMAS ~ 6.0 6.5 %
- 25.0 mm NMAS ~ 5.5 6.0 %

Frequency Distribution of Construction Densities

Construction Densities

- 55% of (22 of 40) projects construction densities were less than 92%
- 78% of (31 of 40) projects construction densities were less than 93%
- Construction densities tended to be grouped by state
- May be related to state's specifications

Effect of NMAS on Field Permeability

Relationship Between Field Permeability, Lift Thickness, and Density

Is There a Tool to Predict Permeability at QC?

- Water Absorption from T166?
 - Defining permeable voids?

Longitudinal Joints

Notched Wedge Joint

Underlying Material

- (1) Vertical Notch Depth = 0.5 to 0.75 inches
- (2) Length of Wedge = 12 inches
- (3) Wedge Thickness at Edge = Nominal Maximum Aggregate Size of Mix

Notched Wedge Joint

Summary

- There are a number of construction related issues that can increase the potential for moisture damage.
 - Minimize Segregation
 - Minimize Permeability
- There is a relationship between density and permeability.
- NMAS, gradation shape, and lift thickness affect this relationship.

Summary

- During Mix Design
 - Compact samples to design lift thickness
 - Vary air voids to anticipated field values
 - Determine Permeability
- Longitudinal Joints
 - Research Needs to be conducted Using Permeability as a Quality Indicator